
 1

Abstract—This paper describes the work that is being done by

MIT Lincoln Laboratory (MIT LL) to develop a real-time signal
processing testbed for DARPA’s Knowledge-Aided Sensor
Signal Processing and Expert Reasoning (KASSPER) project.

Index Terms—KASSPER, real-time testbed, signal processor,
implementation

I. INTRODUCTION

HIS paper describes the work which is being done by MIT
Lincoln Laboratory (MIT LL) to develop a real-time signal

processing testbed for the Knowledge Aided Sensor Signal
Processing and Expert Reasoning (KASSPER) project. The
goal of the KASSPER project is to improve the performance of
Ground Moving Target Indicator (GMTI) radar systems by
making use of a-priori data and/or expert reasoning techniques.
The first section of this paper will describe the signal
processing testbed itself. The second part of the paper will
describe the Parallel Vector Library (PVL), which is a parallel
signal processing middleware that as been developed at MIT
LL and will be as part of the testbed’s software infrastructure.

II. THE KASSPER SIGNAL PROCESSING TESTBED

The goal of the real-time testbed is to provide a means to
explore the implementation issues related to KASSPER
processing. In order to achieve this, the design of the system
will be driven by a few key system level concepts. These
system level concepts will drive the selection of the real-time
testbed’s software architecture. The system level concepts and
software architecture are intentionally generic with respect to
any real-time signal processor that could be used. A brief
description of the signal processor that will be used in the real-
time testbed will also be provided.

A. System Level Concepts

Look ahead scheduling, KASSPER algorithm implementation,
and intelligent caching are areas that MIT LL will be
investigating. In this section, we will discuss each of these
concepts

The concept behind “look ahead scheduling” is that the radar
system needs to combine knowledge of the goals of the
system’s current mission with knowledge about the external
environment that the system finds itself in order to pre-
schedule the system’s processing timeline some amount of
time into the future. For instance, the system may be able to
determine that there are optimum directions from which to view
an area of interest. The system can then schedule the viewing
of different regions such that each is viewed from the “best”
direction.

In order to effectively implement KASSPER signal processing
algorithms, the computational requirements, data transfer
bandwidth requirements, and the amount of inherent
parallelism for each algorithm will need to be assessed. For
instance, KASSPER signal processing algorithms will use
environmental a-priori knowledge to augment their processing
of radar returns. The amount of potential a-priori data (i.e.,
Digital Terrain Elevation Data (DTED) databases, etc.), a very
large amount of additional processing and/or data movement
may also be necessary. Both the computational and data
handling characteristics of potential KASSPER algorithms
need to be studied in order to determine the best
implementation approach.

KASSPER processing that depends on a-priori knowledge will
rely on prompt real-time access to that knowledge when the
processing is performed. The potentially very large volume of
a-priori data that must be available will require that the data will
be stored on magnetic disks. Since the latency of accessing
such a disk based database can be large, it will be necessary to
intelligently pre-load a knowledge cache with the data that the
processor will need in the near future.

B. Processor Architecture

Two key observations that result from the above system level
concepts are that a real-time knowledge data will be required
and that multiple signal processing algorithms (i.e., multiple
processor modes) must be supported. This section will provide
a high level description of these aspects of the processor
architecture.

KASSPER Real-time Embedded Signal
Processor Testbed

Glenn Schrader, Andrew Heckerling, and Michael Harrison

T

 2

A block diagram of the knowledge database architecture is
shown in Fig. 1. The knowledge database provides storage for
a-priori information that can be used as input to KASSPER
processing algorithms. The amount of a-priori data can be very
large and it is assumed that secondary mass storage such as
hard disks will be necessary. From a real-time point of view the
long latency that is incurred when accessing data from a hard
disk is unacceptable. The a-priori data must therefore be pre-
loaded into a cache by the processor in advance of the data
actually being used. Since the radar’s processing is being
scheduled into the future via look ahead scheduling, the cache
mechanism can use the projected schedule along with the
platform’s environment data to select the appropriate
knowledge data to be loaded and/or dropped out of the
knowledge cache. Note that the scheduler must keep a running
index of the current location of all knowledge data so that it
can manage the contents of the knowledge cache.

Note that knowledge data typically cannot be directly used as
it comes out of the knowledge database. For instance,
geographic coordinates (longitude, latitude) need to be
transformed into radar system coordinates (beam, range cell)
before they can be used. Some amount of pre-processing will
almost certainly be needed for all data retrieved from the
knowledge database.

Fig. 1. Knowledge Database Architecture Block Diagram

A block diagram of the testbed’s mult-mode architecture is
shown in Fig. 2. Due to the complexity of the “real world”
environment, it is expected that both traditional GMTI,
Synthetic Aperture Radar (SAR), as well as GMTI/SAR
variants might be necessary to achieve the desired radar
detection performance. The system must therefore support
multiple processing algorithms and allow switching between
them at runtime based on the current conditions. This can
thought of as a set of independent processing pipelines where
each pipeline implements a different algorithm. Input data can
be directed to the appropriate algorithm pipeline and the
results gathered from the output of that pipeline.

Fig. 2. Multi-mode Architecture Block Diagram

Note that these pipelines should be thought of as logical
pipelines rather than physical pipelines. When these
algorithms are implemented on a real-time signal processor,
they will simply be different processing modes within the
application software.

In order to prototype the multi-mode architecture, the baseline
GMTI algorithm shown in Fig. 3 and the baseline SAR
algorithm shown in Fig. 4 have been defined. These algorithms
are traditional GMTI and SAR algorithms that make no use of
KASSPER concepts. However, the overall processor
architecture will support the inclusion of knowledge so these
implementations can be used as a basis for implementing other
algorithms which do use KASSPER concepts.

Fig. 3. Baseline GMTI Algorithm Block Diagram

Fig. 4. Baseline SAR Algorithm Block Diagram

 3

C. Processor Hardware Architecture

The testbed signal processor is based on a Mercury Computer
Systems parallel multi-processor. Note that this processor is
typical of the real-time processors that are used to implement
radar signal processors and is therefore a reasonable system
on which to investigate KASSPER algorithm implementation
issues. The Mercury processor, when fully expanded, will have
120 Power PC G4 processors. This will provide an aggregate
peak computational throughput of approximately 480
Gflop/sec. This processor is based on Mercury’s Power Stream
architecture, which delivers approximately 8.5 Gbyte/second of
communication bandwidth (bisection bandwidth).

One of the goals of the testbed hardware environment is to
provide interfaces to the signal processor that are similar to the
interfaces that could be encountered on an actual platform. In
the event this processor is integrated onto an actual platform
this approach will allow many of the real-time timing and
control issues to be worked out prior to attempting to integrate
the processor with the platform.

III. THE DEVELOPMENT PROCESS

The software development team at MIT LL follows the process
that is diagrammed in Fig. 5. The four major steps in this
process are algorithm design, algorithm verification, software
design, and software implementation.

Fig. 5. Real-time Testbed Software Development Process

An algorithm team will perform the algorithm design and
verification. The algorithm team will then produce a Matlab
reference implementation of the algorithm and an algorithm
specification document. This algorithm team could be either a
MIT LL team or a team within some other KASSPER
contributor. The MIT LL software development team will
perform the software design and implementation. The software
development team will produce a Preliminary Design Review
document (PDR, a high level software design) and the actual
application code. This process has proven to enable both
higher software productivity and, therefore, quicker algorithm
insertion.

IV. THE PARALLEL VECTOR LIBRARY

A. The Motivation for Creating PVL

Developing high-performance parallel signal processing
software has traditionally been very difficult. Making a parallel
application both portable and scalable adds even more
difficulty. Also, rapid prototyping is difficult when developing
directly on a real-time processor. It has long been realized in
the scientific computing community that an appropriate
computational middleware can greatly ease parallel software
development. However, the type of problems which scientific
programming has traditionally addressed (i.e., solution of a
single large set of linear equations) is not a good match for the
structure of many signal-processing problems (i.e., processing
pipelines which compute a large number of relatively small
problems on streaming data). PVL leverages a number of the
techniques developed for scientific parallel computing to
produce a middleware that is more suited to parallel signal
processing.

B. Parallel Signal Processing Application Concepts

Many signal processing problems can be visualized by a signal
flow graph (i.e., boxes which represent data transformations
connected by arrows representing data movement). PVL
represents the computation blocks as objects called Tasks and
the communication flows as objects called Conduits. Fig. 6
shows a simple application consisting of tasks that supply
data, perform computation, and consume results.

Fig. 6. Simple Pipelined Application

Note that each Task contains parallel data objects and/or
parallel computation objects. All of these objects (including
Tasks) are ‘mappable’. The mapping of a parallel object is a
description of the way in which that object is distributed
across the computational elements of the parallel processor.

C. Application Development and Mapping

A common approach to developing parallel software is to write
a single application that is run across all of the processors.
This is known as the Single Program Multiple Data (SPMD)
model. Note that each processor must decide which portion of
the application’s processing it will perform based upon the
application’s mapping. A traditional way of writing such

 4

applications is to directly code this decision logic into the
application. While this can and has worked in the past, the
application becomes brittle with respect to scaling. For
instance, if the number of processors needs to be changed
then modifications to the application source code become
necessary. It also becomes necessary to make coordinated
changes in portions of the application that are inter-related.
This makes code maintainability difficult and costly. Moving
this decision logic into a middleware library is a significant
improvement since the logic is concentrated in the library
rather than scattered throughout the application. Since this a
common problem across many applications, a middleware
solution also avoids re-implementing the functionality for each
application.

The work performed by MIT LL on previous parallel processor
efforts resulted in a number of observations and insights that
influenced the design of PVL:

• Algorithm implementation and mapping of the
application to the signal processor should be as
orthogonal as possible. Changing the scaling (i.e.,
number of processors) or the processor CPU
architecture can happen both during development
and as technology upgrades are added in the field.
Application re-writes as a result of this are expensive
both during development and during system
maintenance.

• Computation and communication should be seamless
from the application’s point of view. The more that
the parallel architecture of the runtime system
becomes visible to the application the more changes
in scaling and architecture affect the application code.
Ideally, communication should be performed implicitly
as needed based on the mapping of the data objects
and the operations being performed on them.

• The combination of the previous two points makes
rapid prototyping easier since application code can be
portable between workstation and real-time
environments. Workstations or a network of
workstations (NOW) have excellent debugging tools,
are readily available, and are relatively inexpensive.
Real-time parallel processors tend to have less mature
debugging tools, are expensive and therefore scarce.
Developing a functionally correct application in a
workstation or NOW environment and then moving
the application onto the real-time parallel processor
environment to address real-time issues results in an
overall development methodology which leverages
the best strengths of each available tool.

• Much of the code in an application does not affect
the actual performance of the application (i.e., setup
or error handling code). Approximately 90% of the
signal processing workload comes from approximately
10% of the code. Object oriented techniques can be
used to make the 90% of the code that is not critical to
performance as easy to develop as possible.

• There will always be some application specific
computational kernels that a general-purpose library
such as PVL will not support. The library must
therefore supply data access ‘hooks’ which allow
such computational kernels to be built by the
application programmer in an efficient manner.

D. A Simple PVL Example

The following very simple code example highlights several key
PVL attributes.

1. #include <Vector.h>
2. #include <AddPvl.h>
3. void addVectors(aMap, bMap, cMap) {
4. Vector< Complex<Float> > a(‘a’, aMap, LENGTH);
5. Vector< Complex<Float> > b(‘b’, bMap, LENGTH);
6. Vector< Complex<Float> > c(‘c’, cMap, LENGTH);
7. a = 0; b = 1; c = 2;
8. a=b+c;
9. }

Vector (see lines 4,5,6) is a class that provides an abstraction
of a mathematical vector. The Complex<Float> between
brackets is a template parameter indicating that the elements in
the vector are complex and that the real and imaginary parts are
each of type Float. Note that a map is supplied to create each
Vector. The operations on lines 7 (filling the vectors with a
value) and line 8 (placing the element-wise sum of two vectors
into a third vector) remain the same regardless of the maps
supplied to the vectors. If any communications is necessary to
perform the operations, then it happens ‘under the covers’ and
is of no concern (functionally) to the application programmer.

E. The structure of PVL

Since PVL is a middleware, it provides services to an
application program via an Application Programming Interface
(API) and makes use of the services of other supporting
libraries via their APIs. PVL is typically built to use the Vector,
Signal, and Image Processing Library (VSIPL) to perform
computation and the Message Passing Interface (MPI) to
perform communication. Both of these are open standard APIs.
PVL itself, and therefore PVL applications, are very portable
between platforms that support VSIPL and MPI.

 5

Fig. 7. PVL Architecture

F. Future Directions for PVL

There are two additional efforts that have grown out of MIT
LL’s work on PVL.

Hardware PVL (HPVL) extends PVL by including support for
computational resources such as Field Programmable Gate
Arrays (FPGAs) and Application Specific Integrated Circuits
(ASICs). In some cases these may be a more appropriate
choice for implementing an algorithm than a general purpose.
The goal of HPVL is to develop an architecture that will allow
processing to be mapped to either software based
computational kernels or hardware based computational
kernels.

Parallel Matlab provides PVL-like parallel constructs within
Matlab programs. A unique feature of Parallel Matlab is that
the middleware is implemented entirely in Matlab code. Parallel
Matlab programs should therefore be portable to any platform
that is able to run Matlab.

V. SUMMARY

MIT LL has made significant progress defining system level
concepts as well as the software and hardware architectures
that will be used in the KASSPER real-time testbed. Over the
next year we will begin developing prototype implementations
these architectures on the Mercury parallel processor. In
addition, we will continue our ongoing work on implementing
our baseline processing algorithms.

